A scalable permutation approach reveals replication and preservation patterns of gene coexpression modules
نویسندگان
چکیده
Gene coexpression network modules provide a framework for identifying shared biological functions. Analysis of topological preservation of modules across datasets is important for assessing reproducibility, and can reveal common function between tissues, cell types, and species. Although module preservation statistics have been developed, heuristics have been required for significance testing. However, the scale of current and future analyses requires accurate and unbiased p-values, particularly to address the challenge of multiple testing. Here, we developed a rapid and efficient approach (NetRep) for assessing module preservation and show that module preservation statistics are typically non-normal, necessitating a permutation approach. Quantification of module preservation across brain, liver, adipose, and muscle tissues in a BxH mouse cross revealed complex patterns of multi-tissue preservation with 52% of modules showing unambiguous preservation in one or more tissues and 25% showing preservation in all four tissues. Phenotype association analysis uncovered a liver-derived gene module which harboured housekeeping genes and which also displayed adipose and muscle tissue specific association with body weight. Taken together, our study presents a rapid unbiased approach for testing preservation of gene network topology, thus enabling rigorous assessment of potentially conserved function and phenotype association analysis. . CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/029553 doi: bioRxiv preprint first posted online Oct. 21, 2015;
منابع مشابه
Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma.
Chronic infections with the hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risks of hepatocellular carcinoma (HCC), and great efforts have been made towards the understanding of the different mechanisms that link the viral infection of hepatic lesions to HCC development. In this work, we developed a novel framework to identify distinct patterns of gene coexpression networks a...
متن کاملGene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.
One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were d...
متن کاملA system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples.
CONTEXT Schizophrenia is a common, highly heritable, neurodevelopmental mental illness, characterized by genetic heterogeneity. OBJECTIVE To identify abnormalities in the transcriptome organization among older persons with schizophrenia and controls. DESIGN Weighted gene coexpression network analysis based on microarray transcriptomic profiling. SETTING Research hospital. PATIENTS Postmortem br...
متن کاملSubspace Differential Coexpression Analysis: Problem Definition and a General Approach
In this paper, we study methods to identify differential coexpression patterns in case-control gene expression data. A differential coexpression pattern consists of a set of genes that have substantially different levels of coherence of their expression profiles across the two sample-classes, i.e., highly coherent in one class, but not in the other. Biologically, a differential coexpression pat...
متن کاملIdentifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.
Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015